Heterologous expression of the Treponema pallidum laminin-binding adhesin Tp0751 in the culturable spirochete Treponema phagedenis.
نویسندگان
چکیده
Treponema pallidum subsp. pallidum, the causative agent of syphilis, is an unculturable, genetically intractable bacterium. Here we report the use of the shuttle vector pKMR4PEMCS for the expression of a previously identified T. pallidum laminin-binding adhesin, Tp0751, in the nonadherent, culturable spirochete Treponema phagedenis. Heterologous expression of Tp0751 in T. phagedenis was confirmed via reverse transcriptase PCR analysis with tp0751 gene-specific primers and immunofluorescence analysis with Tp0751-specific antibodies; the latter assay verified the expression of the laminin-binding adhesin on the treponemal surface. Expression of Tp0751 within T. phagedenis was functionally confirmed via laminin attachment assays, in which heterologous Tp0751 expression conferred upon T. phagedenis the capacity to attach to laminin. Further, specific inhibition of the attachment of T. phagedenis heterologously expressing Tp0751 to laminin was achieved by using purified antibodies raised against recombinant T. pallidum Tp0751. This is the first report of heterologous expression of a gene from an unculturable treponeme in T. phagedenis. This novel methodology will significantly advance the field of syphilis research by allowing targeted investigations of T. pallidum proteins purported to play a role in pathogenesis, and specifically host cell attachment, in the nonadherent spirochete T. phagedenis.
منابع مشابه
Bifunctional role of the Treponema pallidum extracellular matrix binding adhesin Tp0751.
Treponema pallidum, the causative agent of syphilis, is a highly invasive pathogenic spirochete capable of attaching to host cells, invading the tissue barrier, and undergoing rapid widespread dissemination via the circulatory system. The T. pallidum adhesin Tp0751 was previously shown to bind laminin, the most abundant component of the basement membrane, suggesting a role for this adhesin in h...
متن کاملIdentification of a Treponema pallidum laminin-binding protein.
Host extracellular matrix (ECM) components represent ideal microbial adhesion targets that many pathogens use for colonization of tissues and initiation of infection. This study investigated the interaction of the spirochete Treponema pallidum with the ECM component laminin. To identify candidate laminin-binding adhesins, the T. pallidum genome was analyzed to predict open reading frames that e...
متن کاملActivation and Proteolytic Activity of the Treponema pallidum Metalloprotease, Pallilysin
Treponema pallidum is a highly invasive pathogen that undergoes rapid dissemination to establish widespread infection. Previous investigations identified the T. pallidum adhesin, pallilysin, as an HEXXH-containing metalloprotease that undergoes autocatalytic cleavage and degrades laminin and fibrinogen. In the current study we characterized pallilysin's active site, activation requirements, cel...
متن کاملConservation of the Host-Interacting Proteins Tp0750 and Pallilysin among Treponemes and Restriction of Proteolytic Capacity to Treponema pallidum.
The spirochete Treponema pallidum subsp. pallidum is the causative agent of syphilis, a chronic, sexually transmitted infection characterized by multiple symptomatic and asymptomatic stages. Although several other species in the genus are able to cause or contribute to disease, T. pallidum differs in that it is able to rapidly disseminate via the bloodstream to tissue sites distant from the sit...
متن کاملA defined syphilis vaccine candidate inhibits dissemination of Treponema pallidum subspecies pallidum
Syphilis is a prominent disease in low- and middle-income countries, and a re-emerging public health threat in high-income countries. Syphilis elimination will require development of an effective vaccine that has thus far remained elusive. Here we assess the vaccine potential of Tp0751, a vascular adhesin from the causative agent of syphilis, Treponema pallidum subsp. pallidum. Tp0751-immunized...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of bacteriology
دوره 190 7 شماره
صفحات -
تاریخ انتشار 2008